Lorsque les grands modèles linguistiques ont commencé leur marche triomphale il y a quelques années, ils ont presque eu l'air d'un retour aux anciennes vertus de la technique : un outil qui fait ce qu'on lui dit de faire. Un outil qui sert l'utilisateur, et non l'inverse. Les premières versions - de GPT-3 à GPT-4 - avaient des faiblesses, oui, mais elles étaient étonnamment utiles. Elles expliquaient, analysaient, formulaient, résolvaient des tâches. Et elles le faisaient en grande partie sans lest pédagogique.
On parlait à ces modèles comme à un collaborateur savant, qui se trompait parfois, mais dont le travail était simple. Ceux qui écrivaient des textes créatifs, généraient des codes de programme ou réalisaient de longues analyses ont pu constater à quel point tout se passait bien. Il y avait un sentiment de liberté, d'espace de création ouvert, d'une technique qui soutenait l'homme au lieu de le corriger.